Hydrolysis of angiotensin II receptor blocker prodrug olmesartan medoxomil by human serum albumin and identification of its catalytic active sites.

نویسندگان

  • Shen-Feng Ma
  • Makoto Anraku
  • Yasunori Iwao
  • Keishi Yamasaki
  • Ulrich Kragh-Hansen
  • Noriyuki Yamaotsu
  • Shuichi Hirono
  • Toshihiko Ikeda
  • Masaki Otagiri
چکیده

In the present study, we investigated the esterase-like activity of human serum albumin (HSA) and the mechanism by which it hydrolyzes, and thereby activates, olmesartan medoxomil (CS-866), a novel angiotensin II receptor antagonist. CS-866 has previously been shown to be rapidly hydrolyzed in serum in which HSA appeared to play the most important role in catalyzing the hydrolysis. We found that the hydrolysis of CS-866 by HSA followed Michaelis-Menten kinetics. Compared with the release of p-nitrophenol from p-nitrophenyl acetate (PNPA), CS-866 showed lower affinity to HSA and a lower catalytic rate of hydrolysis. Thermodynamic data indicated that PNPA has a smaller value of activation entropy (deltaS) than CS-866; consequently, PNPA is more reactive than CS-866. Ibuprofen and warfarin acted as competitive inhibitors of hydrolysis of CS-866, whereas dansyl-L-asparagine, n-butyl p-aminobenzoate, and diazepam did not. These findings suggest that the hydrolytic activity is associated to parts of site I and site II for ligand binding. All chemically modified HSA derivatives (Tyr-, Lys-, His-, and Trp-modifications) had significantly lower reactivity than native HSA; Lys-HSA and Trp-HSA had especially low reactivity. All the mutant HSAs tested (K199A, W214A, and Y411A) exhibited a significant decrease in reactivity, suggesting that Lys-199, Trp-214, and Tyr-411 play important roles in the hydrolysis. Results obtained using a computer docking model are in agreement with the experimental results, and strongly support the hypotheses that we derived from the experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Carboxymethylenebutenolidase as a Bioactivating Hydrolase of Olmesartan Medoxomil in Liver and Intestine

Olmesartan medoxomil (OM) is a prodrug type angiotensin II type 1 receptor antagonist widely prescribed as an antihypertensive agent. Herein, we describe the identification and characterization of the OM bioactivating enzyme that hydrolyzes the prodrug and converts to its pharmacologically active metabolite olmesartan in human liver and intestine. The protein was purified from human liver cytos...

متن کامل

Paraoxonase 1 as a major bioactivating hydrolase for olmesartan medoxomil in human blood circulation: molecular identification and contribution to plasma metabolism.

Olmesartan medoxomil (OM) is a prodrug-type angiotensin II type 1 receptor antagonist. The OM-hydrolyzing enzyme responsible for prodrug bioactivation was purified from human plasma through successive column chromatography and was molecularly identified through N-terminal amino acid sequencing, which resulted in a sequence of 20 amino acids identical to that of human paraoxonase 1 (PON1). Two r...

متن کامل

Different hydrolases involved in bioactivation of prodrug-type angiotensin receptor blockers: carboxymethylenebutenolidase and carboxylesterase 1.

Olmesartan medoxomil (OM) is a prodrug-type angiotensin II type 1 receptor blocker (ARB). We recently identified carboxymethylenebutenolidase homolog (CMBL) as the responsible enzyme for OM bioactivation in humans. In the present study, we compared the bioactivating properties of OM with those of other prodrug-type ARBs, candesartan cilexetil (CC) and azilsartan medoxomil (AM), by focusing on i...

متن کامل

Different hydrolases involved in bioactivation of prodrug - type angiotensin receptor

242 words Introduction: 491 words Discussion: 1168 words Abbreviations: ARB, angiotensin receptor blocker; AM, azilsartan medoxomil; BNPP, bis-p-nitrophenylphosphate; CC, candesartan cilexetil; CES, carboxylesterase; CMBL, carboxymethylenebutenolidase homolog; Km, Michaelis constant; LC-MS/MS, liquid chromatography with tandem mass spectrometry; OM, olmesartan medoxomil; S9, This article has no...

متن کامل

Dmd053595 1888..1895

Olmesartan medoxomil (OM) is a prodrug-type angiotensin II type 1 receptor blocker (ARB). We recently identified carboxymethylenebutenolidase homolog (CMBL) as the responsible enzyme for OM bioactivation in humans. In the present study, we compared the bioactivating properties of OM with those of other prodrug-type ARBs, candesartan cilexetil (CC) and azilsartan medoxomil (AM), by focusing on i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 33 12  شماره 

صفحات  -

تاریخ انتشار 2005